Role of mountain glaciers in the hydrological dynamics of headwater basins in the Wet Andes
DOI:
https://doi.org/10.29393/ppudec-4rmlr70004Keywords:
Wet Andes, Mountain basins, Stable isotope, Glacier melt, Mixing modelResumen
The Andes of southern Chile have isolated glaciers on volcanic edifices that, together with the precipitation, contribute to several important river systems in the region. The decrease in the extension of glaciers and the negative trend in precipitation will reduce the downstream water availability. Nonetheless, studies on the sensitivity of hydrological systems due to climate change focus mainly on arid and semi-arid areas of the Andes, compared to wet regions with isolated mountain glaciers. Despite the extension and hydrological importance of the Wet Andes and significant trends of decreasing flow that have affected the region for several years, studies have yet to assess the importance of its glaciers in runoff generation. Through isotopic monitoring, we estimate the contribution of glacial melt in the Allipen headwater basin of the Wet Andes (between 38°40’S and 39°S). We performed isotopic measurements of 18O and 2H on a seasonal basis during three seasons in snow, glacial melt, lagoons, groundwater, and stream flow in nested basins. Stable isotope data were analyzed in a Bayesian framework using the MixSIAR model, where spatial and temporal relationships were incorporated. The contribution of groundwater (springs) is prominent in three of the four nested basins throughout the analyzed period. In one of the basins, lagoons correspond to the main contributing source. Additionally, the contribution of glacier thaw reached up to 30% in another of the nested basins. Meanwhile, precipitation was less important in all basins. When analyzing the complete basin (without the nested basin approach), the results show the dominance of groundwater contributions as the main source, varying between 56% and 62%, followed by ponds, which vary between 13.5% and 23%. In contrast, glacier thaw varies between 11% and 18%, even though it only covers approximately 1.5% of the total basin area. These results show the variability of hydrological processes at different spatial scales and the importance of small mountain glaciers in the basins of the Wet Andes. Furthermore,the analysis of the physical variables of the basins allows for identifying the importance of the volcanic landscape in the hydrological dynamics of the region. Our results suggest that due to climate change, it is necessary to evaluate and quantify changes in flow dynamics in humid regions, especially in basins that receive significant contributions from retreating glaciers. These results will allow for the identification of new monitoring points and techniques to
discriminate and quantify the contribution of different sources and the identification of areas or hydrological processes relevant in terms of conservation or integrated management.
Citas
- Araya-Osses, D., Casanueva, A., Román-Figueroa, C., Uribe, J. M., and Paneque, M., 2020. Climate change projections of temperature and precipitation in chile based on statistical downscaling. Climate Dynamics, 54:4309–4330.
- Baraer, M., Mckenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T., Gomez, J., Knox, S., and Fortner, S. K., 2015. Contribution of groundwater to the outflow from ungauged glacierized catchments: A multi-site study in the tropical cordillera blanca, peru. Hydrological Processes, 29:2561–2581.
- Barcaza, G., Nussbaumer, S. U., Tapia, G., Valdés, J., García, J. L., Videla, Y., Albornoz, A., and Arias, V., 2017. Glacier inventory and recent glacier variations in the andes of chile, south america. Annals of Glaciology, 58:166–180.
- Birkel, C., Barahona, A. C., Duvert, C., Bolaños, S. G., Palma, A. C., Quesada, A. M. D., Murillo, R. S., and Biester, H., 2021. End member and bayesian mixing models consistently indicate near-surface flowpath dominance in a pristine humid tropical rainforest. Hydrological Processes, 35.
- Boisier, J. P., Rondanelli, R., Garreaud, R. D., and Muñoz, F., 2016. Anthropogenic and natural contributions to the southeast pacific precipitation decline and recent megadrought in central chile. Geophysical Research Letters, 43:413–421.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L., 2019. Isotopes in the water cycle: Regional-to global-scale patterns and applications. The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org, 47:453–79.
- Bravo, C., Loriaux, T., Rivera, A., and Brock, B. W., 2017. Assessing glacier melt contribution to streamflow at universidad glacier, central andes of chile. Hydrology and Earth System Sciences, 21:3249–3266.
- Carretero, S., Capítulo, L. R., Dapeña, C., Fabiano, M., and Kruse, E., 2022. A chemicaland isotopic approach to investigate groundwater dynamics in a coastal aquifer. Catena, 213.
Chang, Q., Ma, R., Sun, Z., Zhou, A., Hu, Y., and Liu, Y., 2018. Using isotopic and geochemical tracers to determine the contribution of glacier-snow meltwater to streamflow in a partly glacierized alpine-gorge catchment in northeastern qinghai-tibet plateau. Journal of Geophysical Research: Atmospheres, 123:10,037–10,056.
- Chen, H., Chen, Y., Li, W., and Li, Z., 2019. Quantifying the contributions of snow/glacier meltwater to river runoff in the tianshan mountains, central asia. Global and Planetary Change, 174:47–57.
- Chen, X., Wang, G., and Wang, F., 2018. Classification of stable isotopes and identification of water replenishment in the naqu river basin, qinghai-tibet plateau. Water (Switzerland), 11.
- CIREN2018. Comuna de melipeuco: Recursos naturales. Informe Técnico.
- Cordero, R. R., Asencio, V., Feron, S., Damiani, A., Llanillo, P. J., Sepulveda, E., Jorquera, J., Carrasco, J., and Casassa, G., 2019. Dry-season snow cover losses in the andes (18°–40°s) driven by changes in large-scale climate modes. Scientific Reports, 9.
- Correa, A., Windhorst, D., Tetzlaff, D., Crespo, P., Célleri, R., Feyen, J., and Breuer, L., 2017. Temporal dynamics in dominant runoff sources and flow paths in the andean páramo. Water Resources Research, 53:5998–6017.
Cowie, R. M., Knowles, J. F., Dailey, K. R., Williams, M. W., Mills, T. J., and Molotch, N. P., 2017. Sources of streamflow along a headwater catchment elevational gradient. Journal of Hydrology, 549:163–178.
- Crespo, S., Aranibar, J., Gomez, L., Schwikowski, M., Bruetsch, S., Cara, L., and Villalba, R., 2017. Ionic and stable isotope chemistry as indicators of water sources to the upper mendoza river basin, central andes of argentina. Hydrological Sciences Journal, 62:588–605.
- Crespo, S. A., Lavergne, C., Fernandoy, F., Muñoz, A. A., Cara, L., and Olfos-Vargas, S., 2020. Where does the chilean aconcagua river come from? use of natural tracers for water genesis characterization in glacial and periglacial environments. Water (Switzerland), 12. - Dussaillant, I., Berthier, E., Brun, F., Masiokas, M., Hugonnet, R., Favier, V., Rabatel, A., Pitte, P., and Ruiz, L., 2019. Two decades of glacier mass loss along the andes. Nature Geoscience, 12:802–808.
- Eastoe, C. J. and Wright, W. E., 2019. Hydrology of mountain blocks in arizona and new mexico as revealed by isotopes in groundwater and precipitation. Geosciences (Switzerland), 9.
- Elder, K., Dozier, J., and Michaelsen, J., 1991. Snow accumulation and distribution in an alpine watershed. WATER RESOURCES RESEARCH, 27:1541–1552.
- Erxleben, J., Elder, K., and Davis, R., 2002. Comparison of spatial interpolation methods for estimating snow distribution in the colorado rocky mountains. Hydrological Processes, 16:3627–3649.
- Fang, J., Yi, P., Stockinger, M., Xiong, L., and Shen, J., 2022. Investigation of factors controlling the runoff generation mechanism using isotope tracing in large-scale nested basins. Journal of Hydrology, 615.
- Farías-Barahona, D., Vivero, S., Casassa, G., Schaefer, M., Burger, F., Seehaus, T., Iribarren-Anacona, P., Escobar, F., and Braun, M. H., 2019. Geodetic mass balances and area changes of echaurren norte glacier (central andes, chile) between 1955 and 2015. Remote Sensing, 11.
- Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Page, M. L., and Escadafal, R., 2017. Snow hydrology in mediterranean mountain regions: A review. Journal of Hydrology, 551:374–396.
- Feng, M., Zhang, W., Zhang, S., Sun, Z., Li, Y., Huang, Y., Wang, W., Qi, P., Zou, Y., and Jiang, M., 2022. The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes. Journal of Hydrology, 604.
- Fernández-Alberti, S., del Río, R. A., Bornhardt, C., and Ávila, A., 2021. Development and validation of a model to evaluate the water resources of a natural protected area as a provider of ecosystem services in a mountain basin in southern chile. Frontiers in Earth Science, 8.
- Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., and Veloso-Aguila, D., 2020. The central chile mega drought (2010–2018): A climate dynamics perspective. International Journal of Climatology, 40:421–439.
- Hathaway, J. M., Westbrook, C. J., Rooney, R. C., Petrone, R. M., and Langs, L. E., 2022. Quantifying relative contributions of source waters from a subalpine wetland to downstream water bodies. Hydrological Processes, 36.
- Hengl, T.2018. Soil texture classes (usda system) for 6 soil depths (0, 10, 30, 60, 100 and 200 cm) at 250 m (v0.2) [data set]. zenodo. https://doi.org/10.5281/zenodo.2525817.
- Hokanson, K. J., Rostron, B. J., Devito, K. J., Hopkinson, C., and Mendoza, C. A., 2022. Landscape controls of surface-water/groundwater interactions on shallow outwash lakes: how the long-term groundwater signal overrides interannual variability due to evaporative effects. Hydrogeology Journal, 30:251–264.
- Huss, M. and Hock, R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8:135–140.
- Huss, M., Zemp, M., Joerg, P. C., and Salzmann, N., 2014. High uncertainty in 21st century runoff projections from glacierized basins. Journal of Hydrology, 510:35–48.
- Immerzeel, W. W., Pellicciotti, F., and Bierkens, M. F., 2013. Rising river flows throughout the twenty-first century in two himalayan glacierized watersheds. Nature Geoscience, 6:742–745.
- IPCC2021. Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change.
- Jasechko, S., Kirchner, J. W., Welker, J. M., and McDonnell, J. J., 2016. Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9:126–129.
- Jasiewicz, J. and Stepinski, T. F., 2013. Geomorphons-a pattern recognition approach to classification and mapping of landforms. Geomorphology, 182:147–156.
-Junghans, N., Cullmann, J., and Huss, M., 2011. Evaluating the effect of snow and ice melt in a alpine headwater catchment and further downstream in the river rhine. Hydrological Sciences Journal, 56:981–993.
- Kaser, G., Großhauser, M., and Marzeion, B., 2010. 1008162107 pnas. Proceedings of the National Academy of Sciences, 107:20223–20227.
- Kirchner, J. W. and Allen, S. T., 2020. Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis. Hydrology and Earth System Sciences, 24:17–39.
- Kochendorfer, J., Earle, M., Rasmussen, R., Smith, C., Yang, D., Morin, S., Mekis, E., Buisan, S., Roulet, Y. A., Landolt, S., Wolff, M., Hoover, J., Thériault, J. M., Lee, G., Baker, B., Nitu, R., Lanza, L., Colli, M., and Meyers, T., 2022. How well are we measuring snow post-spice? Bulletin of
the American Meteorological Society, 103:E370–E388.
- Lachowycz, S. M., Pyle, D. M., Gilbert, J. S., Mather, T. A., Mee, K., Naranjo, J. A., and Hobbs, L. K., 2015. Glaciovolcanism at volcán Sollipulli, southern chile: Lithofacies analysis and interpretation. Journal of Volcanology and Geothermal Research, 303:59–78.
- Langs, L. E., Petrone, R. M., and Pomeroy, J. W., 2020. A δ18o and δ2h stable water isotope analysis of subalpine forest water sources under seasonal and hydrological stress in the canadian rocky mountains. Hydrological Processes, 34:5642–5658.
- Li, D., Wrzesien, M. L., Durand, M., Adam, J., and Lettenmaier, D. P., 2017. How much runoff originates as snow in the western united states, and how will that change in the future? Geophysical Research Letters, 44:6163–6172.
- Livneh, B. and Badger, A. M., 2020. Drought less predictable under declining future snowpack. Nature Climate Change, 10:452–458.
- Lone, S. A., Jeelani, G., Deshpande, R. D., Mukherjee, A., Jasechko, S., and Lone, A., 2021. Meltwaters dominate groundwater recharge in cold arid desert of upper indus river basin (uirb), western himalayas. Science of the Total Environment, 786.
- López-Moreno, J., Granados, I., Ceballos-Barbancho, A., Morán-Tejeda, E., Revuelto, J., Alonso-González, E., Gascoin, S., Herrero, J., Deschamps-Berger, C., and Latron, J., 2023. The signal of snowmelt in streamflow and stable water isotopes in a high mountain catchment in central spain. Journal of Hydrology: Regional Studies, 46:101356.
- Maldonado, V., Contreras, M., and Melnick, D., 2021. A comprehensive database of active and potentially-active continental faults in chile at 1:25,000 scale. Scientific Data, 8.
- Markovich, K. H., Dahlke, H. E., Arumí, J. L., Maxwell, R. M., and Fogg, G. E., 2019. Bayesian hydrograph separation in a minimally gauged alpine volcanic watershed in central chile. Journal of Hydrology, 575:1288–1300.
- Marx, C., Tetzlaff, D., Hinkelmann, R., and Soulsby, C., 2021. Isotope hydrology and water sources in a heavily urbanized stream. Hydrological Processes, 35.
- Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., Dussaillant, I., and MacDonell, S., 2020. A review of the current state and recent changes of the andean cryosphere. Frontiers in Earth Science, 8.
- Miller, J. B., Frisbee, M. D., Hamilton, T. L., and Murugapiran, S. K., 2021. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environmental Research Letters, 16.
- Montgomery, D. R., Balco, G., and Willett, S. D., 2001. Climate, tectonics, and the morphology of the andes. Geology.
- Muñoz, E., Arumí, J. L., Wagener, T., Oyarzún, R., and Parra, V., 2016. Unraveling complex hydrogeological processes in andean basins in south-central chile: An integrated assessment to understand hydrological dissimilarity. Hydrological Processes, 30:4934–4943.
- Nan, Y., Tian, F., Hu, H., Wang, L., and Zhao, S., 2019. Stable isotope composition of river waters across the world. Water (Switzerland), 11.
- Ohlanders, N., Rodriguez, M., and McPhee, J., 2013. Stable water isotope variation in a central andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences, 17:1035–1050.
- Olsen, R. L., Chappell, R. W., and Loftis, J. C., 2012. Water quality sample collection, data treatment and results presentation for principal components analysis - literature review and illinois river watershed case study. Water Research, 46:3110–3122.
- Ortega, L. and Gil, L., 2019. But what are isotopes? isotope hydrology: an overview.
- Ouyang, Y., Grace, J. M., Parajuli, P. B., and Caldwell, P. V., 2022. Impacts of multiple hurricanes and tropical storms on watershed hydrological processes in the florida panhandle. Climate, 10.
- Penna, D. and van Meerveld, H. J., 2019. Spatial variability in the isotopic composition of water in small catchments and its effect on hydrograph separation. Wiley Interdisciplinary Reviews: Water, 6:1–33.
- Petermann, E., Gibson, J. J., Knöller, K., Pannier, T., Weiß, H., and Schubert, M., 2018. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18o, 2h) and radon (222rn) mass balances. Hydrological
Processes, 32:805–816.
- Peters, E., Visser, A., Esser, B. K., and Moran, J. E., 2018. Tracers reveal recharge elevations, groundwater flow paths and travel times on mount shasta, california. Water (Switzerland), 10.
- Post, D. A. and Jones, J. A., 2019. Hydrologic regimes of forested, mountainous, headwater basins in new hampshire, north carolina, oregon, and puerto rico. Advances in Water Resources.
- Pu, T., Qin, D., Kang, S., Niu, H. W., He, Y., and Wang, S., 2017. Water isotopes and hydrograph separation in different glacial catchments in the southeast margin of the tibetan plateau. Hydrological Processes, 31:3810–3826.
- Pérez-Flores, P., Cembrano, J., Sánchez-Alfaro, P., Veloso, E., Arancibia, G., and Roquer, T., 2016. Tectonics, magmatism and paleo-fluid distribution in a strike-slip setting: Insights from the northern termination of the liquiñe-ofqui fault system, chile. Tectonophysics, 680:192–210.
- Ragettli, S., Immerzeel, W. W., and Pellicciotti, F., 2016. Contrasting climate change impact on river flows from high-altitude catchments in the himalayan and andes mountains. Proceedings of the National Academy of Sciences of the United States of America,
:9222–9227.
- Reato, A., Borzi, G., Martínez, O. A., and Carol, E., 2022. Role of rock glaciers and other high-altitude depositional units in the hydrology of the mountain watersheds of the northern patagonian andes. Science of the Total Environment, 824.
- Rodriguez, M., Ohlanders, N., Pellicciotti, F., Williams, M. W., and McPhee, J., 2016. Estimating runoff from a glacierized catchment using natural tracers in the semi-arid andes cordillera. Hydrological Processes, 30:3609–3626.
- Saberi, L., McLaughlin, R. T., Ng, G. H. C., Frenierre, J. L., Wickert, A. D., Baraer, M., Zhi, W., Li, L., and Mark, B. G., 2019. Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed. Hydrology and Earth System Sciences, 23:405–425.
- Scheihing, K. W., Moya, C. E., Struck, U., Lictevout, E., and Tröger, U., 2018. Reassessing hydrological processes that control stable isotope tracers in groundwater of the atacama desert (northern chile). Hydrology, 5.
- Sepúlveda, L. D., Echegoyen, C. V., Martin, M. E., Campodonico, V. A., Pasquini, A. I., Temporetti, P., and Lecomte, K. L., 2022. Isotopic signature of a glacial influenced hydrological system in northern patagonia, argentina. Hydrological Processes, 36.
- Somers, L. D., McKenzie, J. M., Mark, B. G., Lagos, P., Ng, G. H. C., Wickert, A. D., Yarleque, C., Baraër, M., and Silva, Y., 2019. Groundwater buffers decreasing glacier melt in an andean watershed—but not forever. Geophysical Research Letters, 46:13016–13026.
- Stock, B. and Semmens, B., 2016. Mixsiar gui user manual v3.1.
- Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., and Semmens, B. X., 2018. Analyzing mixing systems using a new generation of bayesian tracer mixing models. PeerJ, 2018.
- Suárez, M. and C., E., 1997. Hoja curacautín, regiones de la araucanía y del biobío, mapa escala 1:250.000. Servicio Nacional de Geología y Minería.
- Tague, C. and Grant, G. E., 2004. A geological framework for interpreting the low-flow regimes of cascade streams, willamette river basin, oregon. Water Resources Research, 40.
- Vincent, A., Violette, S., and Aðalgeirsdóttir, G., 2019. Groundwater in catchments headed by temperate glaciers: A review. Earth-Science Reviews, 188:59–76.
- Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R., 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research, 43.
- Wan, C., Li, K., Zhang, H., Yu, Z., Yi, P., and Chen, C., 2020. Integrating isotope mass balance and water residence time dating: insights of runoff generation in small permafrost watersheds from stable and radioactive isotopes. Journal of Radioanalytical and Nuclear Chemistry, 326:241–254.
- Williams, M. W., Wilson, A., Tshering, D., Thapa, P., and Kayastha, R. B., 2016. Using geochemical and isotopic chemistry to evaluate glacier melt contributions to the chamkar chhu (river), bhutan. Annals of Glaciology, 57:339–348.
- Yang, N., Zhou, P., Wang, G., Zhang, B., Shi, Z., Liao, F., Li, B., Chen, X., Guo, L., Dang,X., and Gu, X., 2021. Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in delingha, northwest china. Journal of Hydrology, 598.
- Zhou, J., Ding, Y., Wu, J., Liu, F., and Wang, S., 2021. Streamflow generation in semi-arid, glacier-covered, montane catchments in the upper shule river, qilian mountains, northeastern tibetan plateau. Hydrological Processes, 35.
Descargas
Postado
Categorías
Licencia
Derechos de autor 2026 Elizabet Lizama, Marcelo Somos-Valenzuela, Diego Rivera, Mario Lillo, Bastian Morales, Michel Baraër, Alonzo Fernandez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia de uso
El Repositorio distribuye sus contenidos bajo la Licencia Creative Commons Internacional de Atribución (CC BY 4.0), lo que permite que el uso de los documentos depositados en el Repositorio deba regirse de acuerdo a las siguientes condiciones:
- Reconocimiento. Se deben reconocer los créditos de la obra de la manera especificada por el autor o el licenciador.



