Experimental investigations on sustainable mortar containing mining tailing as partial replacement of fine aggregate
DOI:
https://doi.org/10.29393/ppudec-5eism50005Keywords:
Concrete, Copper Tailing, Replacement, Mechanical resistance, Chemical CharacterisationResumen
Mine tailings, originating from diverse regions in central Chile (Andina, Los Bronces, El Teniente), were systematically collected and subjected to mineralogical analysis. Based on this analysis, the tailings were categorized into distinct minerals groups, including silicate, carbonate, and feldspar. Following this categorization, these mine tailings were explored as promising substitutes for fine aggregates in concrete constituents. It was found a substantial enhancement in the compressive strength of concrete when incorporating mine tailings, particularly when replacing up to 30% of the fine aggregates. This improvement can be initially attributed to the presence of heavy metals within the tailings. However, exceeding the 30% threshold for fine aggregate replacement with tailings, results in a diminishing effect on concrete compressive strength. The favourable outcomes can be attributed to the mineralogical compositions of the tailings, particularly to the SiO2 content, which exerts a positive influence on the overall matrix mix.. This innovative approach not only augments the performance of concrete but also contributes to a noteworthy reduction in the environmental footprint associated with mining activities.
Citas
Chen, S.C.; Lin, W.T.; Lin, K.L.; Huang, P.Y. A study on the mixed properties of green controlled low strength cementitious. Mater. Sci. Pol. 2021, 39, 59–74, doi:10.2478/msp-2021-0004.
Chen, S.-C.; Lin, W.-T.; Huang, R.; Hsu, H.-M. Performance of Green Concrete and Inorganic Coating Materials. Materials (Basel). 2021, 14.
Zhang, Z.; Zhang, Z.; Yin, S.; Yu, L. Utilization of Iron Tailings Sand as an Environmentally Friendly Alternative to Natural River Sand in High-Strength Concrete: Shrinkage Characterization and Mitigation Strategies. Materials (Basel). 2020, 13.
Zhang, W.; Gu, X.; Qiu, J.; Liu, J.; Zhao, Y.; Li, X. Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete. Constr. Build. Mater. 2020, 260, 119917, doi:https://doi.org/10.1016/j.conbuildmat.2020.119917.
Arulmoly, B.; Konthesingha, C.; Nanayakkara, A. Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand. Constr. Build. Mater. 2021, 297, 123784, doi:https://doi.org/10.1016/j.conbuildmat.2021.123784.
Gou, M.; Zhou, L.; Then, N.W.Y. Utilization of tailings in cement and concrete: A review. Sci. Eng. Compos. Mater. 2019, 26, 449–464, doi:10.1515/secm-2019-0029.
Kesimal, A.; Yilmaz, E.; Ercikdi, B.; Alp, I.; Deveci, H. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Mater. Lett. 2005, 59, 3703–3709, doi:https://doi.org/10.1016/j.matlet.2005.06.042.
Liu, L.; Wang, Y.; Cai, C. Study on decomposition kinetics of activated alunite concentrate from copper tailings and leaching behavior of valuable elements. Clean. Mater. 2021, 1, 100008, doi:https://doi.org/10.1016/j.clema.2021.100008.
Jamshid, E.; Hossein, A.; Obinna, O. Reuse Potentials of Copper Mine Tailings in Mortar and Concrete Composites. J. Mater. Civ. Eng. 2020, 32, 4020084, doi:10.1061/(ASCE)MT.1943-5533.0003145.
Saeed, A.; Rui, C.; Lianyang, Z. Utilization of Mine Tailings As Road Base Material. GeoCongress 2012 2012, 3654–3661.
Han, W.; Han, F.; Zhang, K. Influence of Copper and Zinc Tailing Powder on the Hydration of Composite Cementitious Materials. Materials (Basel). 2022, 15, 5612, doi:10.3390/ma15165612.
Shirdam, R.; Amini, M.; Bakhshi, N. Investigating the Effects of Copper Slag and Silica Fume on Durability, Strength, and Workability of Concrete. Int. J. Environ. Res. 2019, 13, 909–924, doi:10.1007/s41742-019-00215-7.
Kurniati, E.O.; Pederson, F.; Kim, H.-J. Application of steel slags, ferronickel slags, and copper mining waste as construction materials: A review. Resour. Conserv. Recycl. 2023, 198, 107175, doi:https://doi.org/10.1016/j.resconrec.2023.107175.
Saxena, M.; Dhimole, L.K. Utilization and value addition of copper tailing as an extender for development of paints. J. Hazard. Mater. 2006, 129, 50–57, doi:https://doi.org/10.1016/j.jhazmat.2005.05.052.
Maruthupandian, S.; Chaliasou, A.; Kanellopoulos, A. Recycling mine tailings as precursors for cementitious binders–Methods, challenges and future outlook. Constr. Build. Mater. 2021, 312, 125333.
Adiansyah, J.S.; Rosano, M.; Vink, S.; Keir, G. A framework for a sustainable approach to mine tailings management: disposal strategies. J. Clean. Prod. 2015, 108, 1050–1062, doi:https://doi.org/10.1016/j.jclepro.2015.07.139.
Lagos, G.; Peters Núñez, D.; Lima, M.; Jara, J.J. Potential copper production through 2035 in Chile. Miner. Econ. 2020, 33, doi:10.1007/s13563-020-00227-2.
Qaidi, S.M.A.; Tayeh, B.A.; Zeyad, A.M.; de Azevedo, A.R.G.; Ahmed, H.U.; Emad, W. Recycling of mine tailings for the geopolymers production: A systematic review. Case Stud. Constr. Mater. 2022, 16, e00933.
He, X.; Yuhua, Z.; Qaidi, S.; Isleem, H.F.; Zaid, O.; Althoey, F.; Ahmad, J. Mine tailings-based geopolymers: A comprehensive review. Ceram. Int. 2022, 48, 24192–24212, doi:https://doi.org/10.1016/j.ceramint.2022.05.345.
Dong, L.; Deng, S.; Wang, F. Some developments and new insights for environmental sustainability and disaster control of tailings dam. J. Clean. Prod. 2020, 269, 122270.
Manjarrez, L.; Zhang, L. Utilization of copper mine tailings as road base construction material through geopolymerization. J. Mater. Civ. Eng. 2018, 30, 4018201.
Ahmari, S.; Zhang, L. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr. Build. Mater. 2012, 29, 323–331, doi:https://doi.org/10.1016/j.conbuildmat.2011.10.048.
Zhang, L.; Ahmari, S.; Zhang, J. Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Constr. Build. Mater. 2011, 25, 3773–3781, doi:https://doi.org/10.1016/j.conbuildmat.2011.04.005.
Wan, Q.; Rao, F.; Song, S.; Zhang, Y. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization. J. Mater. Res. Technol. 2019, 8, 5728–5735, doi:https://doi.org/10.1016/j.jmrt.2019.09.040.
Jiao, X.; Zhang, Y.; Chen, T. Thermal stability of a silica-rich vanadium tailing based geopolymer. Constr. Build. Mater. 2013, 38, 43–47, doi:https://doi.org/10.1016/j.conbuildmat.2012.06.076.
Zhang, N.; Hedayat, A.; Figueroa, L.; Steirer, K.X.; Li, H.; Sosa, H.G.B.; Bernal, R.P.H.; Tupa, N.; Morales, I.Y.; Loza, R.S.C. Experimental studies on the durability and leaching properties of alkali-activated tailings subjected to different environmental conditions. Cem. Concr. Compos. 2022, 130, 104531.
Han, Q.; Wang, A.; Zhang, J. Research on the early fracture behavior of fly ash-based geopolymers modified by molybdenum tailings. J. Clean. Prod. 2022, 365, 132759.
Pacheco-Torgal, F.; Castro-Gomes, J.P.; Jalali, S. Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment. Constr. Build. Mater. 2008, 22, 154–161, doi:https://doi.org/10.1016/j.conbuildmat.2006.10.005.
Chen, S.-C.; Gao, M.-Y.; Lin, W.-T.; Liang, J.-F.; Li, D.-W. Effects of incorporating large quantities of copper tailings with various particle sizes on the strength and pore structure of cement-based materials. Constr. Build. Mater. 2022, 329, 127150.
Zhang, Y.; Shen, W.; Wu, M.; Shen, B.; Li, M.; Xu, G.; Zhang, B.; Ding, Q.; Chen, X. Experimental study on the utilization of copper tailing as micronized sand to prepare high performance concrete. Constr. Build. Mater. 2020, 244, 118312.
Thomas, B.S.; Damare, A.; Gupta, R.C. Strength and durability characteristics of copper tailing concrete. Constr. Build. Mater. 2013, 48, 894–900, doi:https://doi.org/10.1016/j.conbuildmat.2013.07.075.
Descargas
Postado
Categorías
Licencia
Derechos de autor 2026 Siva Avudaiappan, Rene Gómez, Fernando Betancourt, Cristián Canales Cardenas, Manuel Chávez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia de uso
El Repositorio distribuye sus contenidos bajo la Licencia Creative Commons Internacional de Atribución (CC BY 4.0), lo que permite que el uso de los documentos depositados en el Repositorio deba regirse de acuerdo a las siguientes condiciones:
- Reconocimiento. Se deben reconocer los créditos de la obra de la manera especificada por el autor o el licenciador.



