COUPLED FINITE VOLUME METHODS FOR SETTLING IN INCLINED VESSELS WITH NATURAL CONVECTION
DOI:
https://doi.org/10.29393/ppudec-7cfbt40007Keywords:
Sedimentation, natural convention, Boycott effect, numerical simulation, lamella settlerResumen
A widely applied technology of gravity-driven solid-liquid separation in mineral processing is the use of lamella settlers. These units are continuously operated tanks equipped with a number of parallel inclined plates immersed in the mixture to be separated. The inclination of the plates exploits the well-known Boycott effect that describes the enhancement of settling rates beneath inclined surfaces. This effect is usually attributed to a rapidly upward-streaming layer of clear liquid. The essence of this effect can be studied by examining gravity settling in an inclined tube or rectangular channel. The lower and upper surfaces of the channel represent the plate onto which the particles start to settle and below which the clarified liquid streams upward, respectively. In addition an increase of temperature in some part of the fluid causes a local change in the density of the fluid and circulation of the fluid within the vessel. It has been proposed to exploit this behaviour to accelerate the settling process by additional heating. To examine this hypothesis a model and corresponding numerical method to describe inclined settling enhanced by natural convection are formulated. The model consists in a two-dimensional scalar conservation law for the solids concentration coupled with a version of the Stokes system that accounts for density fluctuations in the mixture enhanced by a Boussinesq approximation of the effect of temperature. In addition a convection-diffusion equation describes heat transport and diffusion. The main outcome is a numerical method that allows one to simulate the effect of controllable parameters such as the initial concentration, difference of temperature, and angle of inclination on the progress of the solid-liquid separation. Numerical examples are presented. Results reconfirm that the enhancement of settling rates depends critically on the dimensions of the settling vessel, intensity of heating, and particle size, and is marginal for settling of relatively large particles and channels with a moderate length to width aspect ratio.
Citas
A. Acrivos, and E. Herbolzheimer. Enhanced sedimentation in settling tanks with inclined walls, J. Fluid Mech. 92:435–457, 1979.
F. Auteri, N. Parolini, and L. Quartapelle. Numerical investigation on the stability of singular driven cavity flow, J. Comput. Phys. 183:125, 2002.
R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena, second revised ed., Wiley, 2007.
A. E. Boycott. Sedimentation of blood corpuscles, Nature 104:532, 1920.
R. B¨urger, J. Careaga, and S. Diehl. A review of flux identification methods for models of sedimentation. Water Sci. Tech. 81:1715–1722, 2020.
R. B¨urger, R. Donat, P. Mulet and C. A. Vega. On the hyperbolicity of certain models of polydisperse sedimentation, Math. Meth. Appl. Sci. 35:723-744, 2012.
R. B¨urger and M. Kunik. A critical look at the kinematic-wave theory for sedimentation-consolidation processes in closed vessels, Math. Meth. Appl. Sci. 24:1257–1273, 2001.
R. B¨urger, R. Ruiz-Baier, K. Schneider, and H. Torres. A multiresolution method for the simulation of sedimentation in inclined channels, Int. J. Numer. Anal. Model. 9:479–504, 2012.
R. B¨urger, R. Ruiz-Baier, and H. Torres. A stabilized finite volume element formulation for sedimentationconsolidation processes, SIAM J. Sci. Comput. 34:B265–B289, 2012.
R. B¨urger and W. L. Wendland. Entropy boundary and jump conditions in the theory of sedimentation with compression, Math. Meth. Appl. Sci. 21:865-882, 1998.
R. B¨urger, W. L. Wendland, and F. Concha. Model equations for gravitational sedimentation-consolidation processes, ZAMM Z.Angew. Math. Mech. 80:79–92, 2000.
M. C. Bustos, F. Concha, R. B¨urger, and E. M. Tory. Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.
M. C. Bustos, F. Paiva, and W. L. Wendland. Control of continuous sedimentation of ideal suspensions as an initial and boundary value problem, Math. Meth. Appl. Sci., 12:533—548, 1990.
M. C. Bustos, F. Paiva, and W. L. Wendland. Entropy boundary conditions in the theory of sedimentation of ideal suspensions, Math. Meth. Appl. Sci., 19, 679–697, 1996.
J. Careaga and G. N. Gatica. Coupled mixed finite element and finite volume methods for a solid velocity-based model of multidimensional sedimentation, ESAIM: Math. Model. Numer. Anal., 57(4):2529–2556, 2023.
J. Careaga and S. Diehl. Entropy solutions and flux identification of a scalar conservation law modelling centrifugal sedimentation, Math. Meth. Appl. Sci. 43(7):4530–4557, 2020.
M. A. Christon, P. M. Gresho, and S. B. Sutton. Computational predictability of time dependent natural convection flows in enclosures (including a benchmark solution), Int. J. Numer. Methods Fluids 40:953–980, 2002.
S. Diehl. Estimation of the batch-settling flux function for an ideal suspension from only two experiments, Chem. Eng. Sci. 62:4589–4601, 2007.
H.-S. Dou, G. Jiang, and C. Lei. Numerical simulation and stability study of natural convection in an inclined rectangular cavity, Math. Probl. Engrg. article 198695, 2013.
R. Eymard, R. Herbin, and J. C. Latch´e. Convergence analysis of a collocated finite volume scheme for the incompressible NavierStokes equations on general 2D or 3D meshes, SIAM J. Numer. Anal. 45:1–36, 2007.
S. K. Godunov. Finite difference methods for numerical computation of discontinuous solutions of equations of
fluid dynamics, Mat. Sb. 47:271–295, 1959 (in Russian).
W. Graham and R. Lama. Sedimentation in inclined vessels, Canad. J. Chem. Engrg. 41:31–32, 1963.
D. Kleine and B. D. Reddy. Finite element analysis of flows in secondary settling tanks, Int. J. Numer. Meth. Engrg. 64:849–876, 2005.
G. J. Kynch. A theory of sedimentation, Trans. Faraday Soc. 48:166–176, 1952.
M. Latsa, D. Assimacopoulos, A. Stamou, and N. C. Markatos. Two-phase modeling of batch sedimentation, Appl. Math. Model. 23:881–897, 1999.
S. J. McCaffery, L. Elliott, and D. B. Ingham. One-dimensional enhanced sedimentation in inclined fracture channels, Math. Engrg. Indust. 6:261–290, 1998.
S. J. McCaffery, L. Elliott, and D. B. Ingham. Two-dimensional enhanced sedimentation in inclined fracture channels, Math. Engrg. Indust. 7:97–125, 1998.
H. Nakamura and K. Kuroda. La cause de l’acc´eleration de la vitesse de s´edimentation des suspensions dans les recipients inclin´es, Keijo J. Medicine 8:256–296, 1937.
D. R. Oliver and V. G. Jenson. The inclined settling of dispersed suspensions of spherical particles in squaresection tubes, Canad. J. Chem. Engrg. 42:191–195, 1964.
S. Ostrach. Natural convection in enclosures, Adv. Heat Transf. 8:161–227, 1972.
S. V. Patankar. Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, 1980.
K. W. Pearce. Settling in the presence of downward-facing surfaces. In: P. A. Rottenburg (Ed.), Proc. Symp. on the Interaction Between Fluids and Particles: 3rd Congress of the European Federation of Chemical Engineering, London, June 20–22, 1962, pp. 30–39. Institution of Chemical Engineers, London, 1962.
E. Ponder. On sedimentation and rouleaux formation—I, Quart. J. Exper. Physiol. 15:235–252, 1925.
C. Reyes, M. Alvarez, C. F. Ihle, M. Contreras, and W. Kracht. The influence of seawater on magnetite tailing rheology, Minerals Eng. 131:363–369, 2019.
C. Reyes, C. F. Ihle, F. Apaz, and L. A. Cisternas. Heat-assisted batch settling of mineral suspensions in inclined containers, Minerals 9:article 228, 2019.
J. F. Richardson and W. N. Zaki. Sedimentation and fluidisation: Part I. Trans. Inst. Chem. Engts. (London) 32:35–53, 1954.
R. Ruiz-Baier and I. Lunati. Mixed finite element-discontinuous finite volume element discretization of a general class of multicontinuum models, J. Comput. Phys. 322:666–688, 2016.
R. Ruiz-Baier and H. Torres. Numerical solution of a multidimensional sedimentation problem using finite volume-element methods, Appl. Numer. Math. 95:280–291, 2015.
W. Schneider. Kinematic-wave theory of sedimentation beneath inclined walls, J. Fluid Mech. 120:323–346, 1982.
O. Shishkina and S. Horn. Thermal convection in inclined cylindrical containers, J. Fluid Mech. 790:article R3, 2016.
M. Ungarish. Hydrodynamics of Suspensions, Springer-Verlag, Berlin, 1993.
A. T. Unwin. The mixed convection flow of Newtonian and non-Newtonian fluids in a vertical fracture, Math. Engng. Ind. 5:59–76, 1994.
T. Wan, S. Aliabadi, and C. Bigler. A hybrid scheme based on finite element/volume methods for two immiscible fluid flows, Int. J. Numer. Methods Fluids 61:930–944, 2009.
E. Zahavi and E. Rubin. Settling of solid suspensions under and between inclined surfaces, Ind. Engrg. Chem. Process Des. Dev. 14:34–41, 1975.
Descargas
Postado
Categorías
Licencia
Derechos de autor 2026 Fernando Betancourt, Raimund Bürger, Julio Careaga, Lucas Romero

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia de uso
El Repositorio distribuye sus contenidos bajo la Licencia Creative Commons Internacional de Atribución (CC BY 4.0), lo que permite que el uso de los documentos depositados en el Repositorio deba regirse de acuerdo a las siguientes condiciones:
- Reconocimiento. Se deben reconocer los créditos de la obra de la manera especificada por el autor o el licenciador.



